Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
When to Use
Use this function when you are sure the operation will not reject.
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
map takes a function and applies it to the value contained within an
effect, creating a new effect with the transformed value.
It's important to note that effects are immutable, meaning that the original
effect is not modified. Instead, a new effect is returned with the updated
value.
Executes an effect and returns the result as a Promise.
Details
This function runs an effect and converts its result into a Promise. If the
effect succeeds, the Promise will resolve with the successful result. If
the effect fails, the Promise will reject with an error, which includes the
failure details of the effect.
The optional options parameter allows you to pass an AbortSignal for
cancellation, enabling more fine-grained control over asynchronous tasks.
When to Use
Use this function when you need to execute an effect and work with its result
in a promise-based system, such as when integrating with third-party
libraries that expect Promise results.
Example (Running a Successful Effect as a Promise)
Attaches callbacks for the resolution and/or rejection of the Promise.
@param ― onfulfilled The callback to execute when the Promise is resolved.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of which ever callback is executed.
then(
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
Creates an Effect that always succeeds with a given value.
When to Use
Use this function when you need an effect that completes successfully with a
specific value without any errors or external dependencies.
Example (Creating a Successful Effect)
import { Effect } from"effect"
// Creating an effect that represents a successful scenario
//
// ┌─── Effect<number, never, never>
// ▼
constsuccess= Effect.succeed(42)
@see ― fail to create an effect that represents a failure.
@since ― 2.0.0
succeed(5),
import Effect
@since ― 2.0.0
@since ― 2.0.0
@since ― 2.0.0
Effect.
constas: <string>(value:string) => <A, E, R>(self:Effect.Effect<A, E, R>) =>Effect.Effect<string, E, R> (+1overload)
Replaces the value inside an effect with a constant value.
Details
This function allows you to ignore the original value inside an effect and
replace it with a constant value.
When to Use
It is useful when you no longer need the value produced by an effect but want
to ensure that the effect completes successfully with a specific constant
result instead. For instance, you can replace the value produced by a
computation with a predefined value, ignoring what was calculated before.
Example (Replacing a Value)
import { pipe, Effect } from"effect"
// Replaces the value 5 with the constant "new value"
Executes an effect and returns the result as a Promise.
Details
This function runs an effect and converts its result into a Promise. If the
effect succeeds, the Promise will resolve with the successful result. If
the effect fails, the Promise will reject with an error, which includes the
failure details of the effect.
The optional options parameter allows you to pass an AbortSignal for
cancellation, enabling more fine-grained control over asynchronous tasks.
When to Use
Use this function when you need to execute an effect and work with its result
in a promise-based system, such as when integrating with third-party
libraries that expect Promise results.
Example (Running a Successful Effect as a Promise)
Attaches callbacks for the resolution and/or rejection of the Promise.
@param ― onfulfilled The callback to execute when the Promise is resolved.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of which ever callback is executed.
then(
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
The Effect interface defines a value that describes a workflow or job,
which can succeed or fail.
Details
The Effect interface represents a computation that can model a workflow
involving various types of operations, such as synchronous, asynchronous,
concurrent, and parallel interactions. It operates within a context of type
R, and the result can either be a success with a value of type A or a
failure with an error of type E. The Effect is designed to handle complex
interactions with external resources, offering advanced features such as
fiber-based concurrency, scheduling, interruption handling, and scalability.
This makes it suitable for tasks that require fine-grained control over
concurrency and error management.
To execute an Effect value, you need a Runtime, which provides the
environment necessary to run and manage the computation.
Creates an Effect that represents a recoverable error.
When to Use
Use this function to explicitly signal an error in an Effect. The error
will keep propagating unless it is handled. You can handle the error with
functions like
catchAll
or
catchTag
.
Example (Creating a Failed Effect)
import { Effect } from"effect"
// ┌─── Effect<never, Error, never>
// ▼
constfailure= Effect.fail(
newError("Operation failed due to network error")
)
@see ― succeed to create an effect that represents a successful value.
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
When to Use
Use this function when you are sure the operation will not reject.
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
flatMap lets you sequence effects so that the result of one effect can be
used in the next step. It is similar to flatMap used with arrays but works
specifically with Effect instances, allowing you to avoid deeply nested
effect structures.
Since effects are immutable, flatMap always returns a new effect instead of
changing the original one.
When to Use
Use flatMap when you need to chain multiple effects, ensuring that each
step produces a new Effect while flattening any nested effects that may
occur.
Example
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Executes an effect and returns the result as a Promise.
Details
This function runs an effect and converts its result into a Promise. If the
effect succeeds, the Promise will resolve with the successful result. If
the effect fails, the Promise will reject with an error, which includes the
failure details of the effect.
The optional options parameter allows you to pass an AbortSignal for
cancellation, enabling more fine-grained control over asynchronous tasks.
When to Use
Use this function when you need to execute an effect and work with its result
in a promise-based system, such as when integrating with third-party
libraries that expect Promise results.
Example (Running a Successful Effect as a Promise)
Attaches callbacks for the resolution and/or rejection of the Promise.
@param ― onfulfilled The callback to execute when the Promise is resolved.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of which ever callback is executed.
then(
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
The Effect interface defines a value that describes a workflow or job,
which can succeed or fail.
Details
The Effect interface represents a computation that can model a workflow
involving various types of operations, such as synchronous, asynchronous,
concurrent, and parallel interactions. It operates within a context of type
R, and the result can either be a success with a value of type A or a
failure with an error of type E. The Effect is designed to handle complex
interactions with external resources, offering advanced features such as
fiber-based concurrency, scheduling, interruption handling, and scalability.
This makes it suitable for tasks that require fine-grained control over
concurrency and error management.
To execute an Effect value, you need a Runtime, which provides the
environment necessary to run and manage the computation.
Creates an Effect that represents a recoverable error.
When to Use
Use this function to explicitly signal an error in an Effect. The error
will keep propagating unless it is handled. You can handle the error with
functions like
catchAll
or
catchTag
.
Example (Creating a Failed Effect)
import { Effect } from"effect"
// ┌─── Effect<never, Error, never>
// ▼
constfailure= Effect.fail(
newError("Operation failed due to network error")
)
@see ― succeed to create an effect that represents a successful value.
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
When to Use
Use this function when you are sure the operation will not reject.
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
map takes a function and applies it to the value contained within an
effect, creating a new effect with the transformed value.
It's important to note that effects are immutable, meaning that the original
effect is not modified. Instead, a new effect is returned with the updated
value.
flatMap lets you sequence effects so that the result of one effect can be
used in the next step. It is similar to flatMap used with arrays but works
specifically with Effect instances, allowing you to avoid deeply nested
effect structures.
Since effects are immutable, flatMap always returns a new effect instead of
changing the original one.
When to Use
Use flatMap when you need to chain multiple effects, ensuring that each
step produces a new Effect while flattening any nested effects that may
occur.
Example
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Executes an effect and returns the result as a Promise.
Details
This function runs an effect and converts its result into a Promise. If the
effect succeeds, the Promise will resolve with the successful result. If
the effect fails, the Promise will reject with an error, which includes the
failure details of the effect.
The optional options parameter allows you to pass an AbortSignal for
cancellation, enabling more fine-grained control over asynchronous tasks.
When to Use
Use this function when you need to execute an effect and work with its result
in a promise-based system, such as when integrating with third-party
libraries that expect Promise results.
Example (Running a Successful Effect as a Promise)
Attaches callbacks for the resolution and/or rejection of the Promise.
@param ― onfulfilled The callback to execute when the Promise is resolved.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of which ever callback is executed.
then(
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
Example (Applying a Discount Based on Fetched Amount)
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
Example (Applying a Discount Based on Fetched Amount)
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Executes an effect and returns the result as a Promise.
Details
This function runs an effect and converts its result into a Promise. If the
effect succeeds, the Promise will resolve with the successful result. If
the effect fails, the Promise will reject with an error, which includes the
failure details of the effect.
The optional options parameter allows you to pass an AbortSignal for
cancellation, enabling more fine-grained control over asynchronous tasks.
When to Use
Use this function when you need to execute an effect and work with its result
in a promise-based system, such as when integrating with third-party
libraries that expect Promise results.
Example (Running a Successful Effect as a Promise)
Attaches callbacks for the resolution and/or rejection of the Promise.
@param ― onfulfilled The callback to execute when the Promise is resolved.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of which ever callback is executed.
then(
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Option 和 Either 都常用于处理可选值或缺失值或简单错误情况。这些类型与 Effect.andThen 很好地集成。当与 Effect.andThen 一起使用时,操作被归类为场景 5 和 6(如前所述),因为在这种情况下 Option 和 Either 都被视为 effect。
示例(使用 Option)
1
import {
functionpipe<A>(a:A):A (+19overloads)
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
Creates an Effect that represents an asynchronous computation that might
fail.
When to Use
In situations where you need to perform asynchronous operations that might
fail, such as fetching data from an API, you can use the tryPromise
constructor. This constructor is designed to handle operations that could
throw exceptions by capturing those exceptions and transforming them into
manageable errors.
Error Handling
There are two ways to handle errors with tryPromise:
If you don't provide a catch function, the error is caught and the
effect fails with an UnknownException.
If you provide a catch function, the error is caught and the catch
function maps it to an error of type E.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
Example (Fetching a TODO Item)
import { Effect } from"effect"
constgetTodo= (id:number) =>
// Will catch any errors and propagate them as UnknownException
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
Example (Applying a Discount Based on Fetched Amount)
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
@param ― string A string to convert into a number.
@param ― radix A value between 2 and 36 that specifies the base of the number in string.
If this argument is not supplied, strings with a prefix of '0x' are considered hexadecimal.
All other strings are considered decimal.
@param ― string A string to convert into a number.
@param ― radix A value between 2 and 36 that specifies the base of the number in string.
If this argument is not supplied, strings with a prefix of '0x' are considered hexadecimal.
All other strings are considered decimal.
Creates an Effect that represents an asynchronous computation that might
fail.
When to Use
In situations where you need to perform asynchronous operations that might
fail, such as fetching data from an API, you can use the tryPromise
constructor. This constructor is designed to handle operations that could
throw exceptions by capturing those exceptions and transforming them into
manageable errors.
Error Handling
There are two ways to handle errors with tryPromise:
If you don't provide a catch function, the error is caught and the
effect fails with an UnknownException.
If you provide a catch function, the error is caught and the catch
function maps it to an error of type E.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
Example (Fetching a TODO Item)
import { Effect } from"effect"
constgetTodo= (id:number) =>
// Will catch any errors and propagate them as UnknownException
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
Example (Applying a Discount Based on Fetched Amount)
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
The Effect interface defines a value that describes a workflow or job,
which can succeed or fail.
Details
The Effect interface represents a computation that can model a workflow
involving various types of operations, such as synchronous, asynchronous,
concurrent, and parallel interactions. It operates within a context of type
R, and the result can either be a success with a value of type A or a
failure with an error of type E. The Effect is designed to handle complex
interactions with external resources, offering advanced features such as
fiber-based concurrency, scheduling, interruption handling, and scalability.
This makes it suitable for tasks that require fine-grained control over
concurrency and error management.
To execute an Effect value, you need a Runtime, which provides the
environment necessary to run and manage the computation.
Creates an Effect that represents a recoverable error.
When to Use
Use this function to explicitly signal an error in an Effect. The error
will keep propagating unless it is handled. You can handle the error with
functions like
catchAll
or
catchTag
.
Example (Creating a Failed Effect)
import { Effect } from"effect"
// ┌─── Effect<never, Error, never>
// ▼
constfailure= Effect.fail(
newError("Operation failed due to network error")
)
@see ― succeed to create an effect that represents a successful value.
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
When to Use
Use this function when you are sure the operation will not reject.
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
consttap: <number, Effect.Effect<void, never, never>>(f: (a:number) =>Effect.Effect<void, never, never>) => <E, R>(self:Effect.Effect<number, E, R>) =>Effect.Effect<number, E, R> (+7overloads)
Runs a side effect with the result of an effect without changing the original
value.
Details
This function works similarly to flatMap, but it ignores the result of the
function passed to it. The value from the previous effect remains available
for the next part of the chain. Note that if the side effect fails, the
entire chain will fail too.
When to Use
Use this function when you want to perform a side effect, like logging or
tracking, without modifying the main value. This is useful when you need to
observe or record an action but want the original value to be passed to the
next step.
Example (Logging a step in a pipeline)
import { Console, Effect, pipe } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
flatMap lets you sequence effects so that the result of one effect can be
used in the next step. It is similar to flatMap used with arrays but works
specifically with Effect instances, allowing you to avoid deeply nested
effect structures.
Since effects are immutable, flatMap always returns a new effect instead of
changing the original one.
When to Use
Use flatMap when you need to chain multiple effects, ensuring that each
step produces a new Effect while flattening any nested effects that may
occur.
Example
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Executes an effect and returns the result as a Promise.
Details
This function runs an effect and converts its result into a Promise. If the
effect succeeds, the Promise will resolve with the successful result. If
the effect fails, the Promise will reject with an error, which includes the
failure details of the effect.
The optional options parameter allows you to pass an AbortSignal for
cancellation, enabling more fine-grained control over asynchronous tasks.
When to Use
Use this function when you need to execute an effect and work with its result
in a promise-based system, such as when integrating with third-party
libraries that expect Promise results.
Example (Running a Successful Effect as a Promise)
Attaches callbacks for the resolution and/or rejection of the Promise.
@param ― onfulfilled The callback to execute when the Promise is resolved.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of which ever callback is executed.
then(
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
When to Use
Use this function when you are sure the operation will not reject.
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
When to Use
Use this function when you are sure the operation will not reject.
Combines multiple effects into one, returning results based on the input
structure.
Details
Use this function when you need to run multiple effects and combine their
results into a single output. It supports tuples, iterables, structs, and
records, making it flexible for different input types.
For instance, if the input is a tuple:
// ┌─── a tuple of effects
// ▼
Effect.all([effect1, effect2, ...])
the effects are executed sequentially, and the result is a new effect
containing the results as a tuple. The results in the tuple match the order
of the effects passed to Effect.all.
Concurrency
You can control the execution order (e.g., sequential vs. concurrent) using
the concurrency option.
Short-Circuiting Behavior
This function stops execution on the first error it encounters, this is
called "short-circuiting". If any effect in the collection fails, the
remaining effects will not run, and the error will be propagated. To change
this behavior, you can use the mode option, which allows all effects to run
and collect results as Either or Option.
The mode option
The { mode: "either" } option changes the behavior of Effect.all to
ensure all effects run, even if some fail. Instead of stopping on the first
failure, this mode collects both successes and failures, returning an array
of Either instances where each result is either a Right (success) or a
Left (failure).
Similarly, the { mode: "validate" } option uses Option to indicate
success or failure. Each effect returns None for success and Some with
the error for failure.
Executes an effect and returns the result as a Promise.
Details
This function runs an effect and converts its result into a Promise. If the
effect succeeds, the Promise will resolve with the successful result. If
the effect fails, the Promise will reject with an error, which includes the
failure details of the effect.
The optional options parameter allows you to pass an AbortSignal for
cancellation, enabling more fine-grained control over asynchronous tasks.
When to Use
Use this function when you need to execute an effect and work with its result
in a promise-based system, such as when integrating with third-party
libraries that expect Promise results.
Example (Running a Successful Effect as a Promise)
Attaches callbacks for the resolution and/or rejection of the Promise.
@param ― onfulfilled The callback to execute when the Promise is resolved.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of which ever callback is executed.
then(([
config: {
dbConnection: string;
port: number;
}
config,
dbStatus: string
dbStatus]) => {
17
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
The Effect interface defines a value that describes a workflow or job,
which can succeed or fail.
Details
The Effect interface represents a computation that can model a workflow
involving various types of operations, such as synchronous, asynchronous,
concurrent, and parallel interactions. It operates within a context of type
R, and the result can either be a success with a value of type A or a
failure with an error of type E. The Effect is designed to handle complex
interactions with external resources, offering advanced features such as
fiber-based concurrency, scheduling, interruption handling, and scalability.
This makes it suitable for tasks that require fine-grained control over
concurrency and error management.
To execute an Effect value, you need a Runtime, which provides the
environment necessary to run and manage the computation.
Creates an Effect that represents a recoverable error.
When to Use
Use this function to explicitly signal an error in an Effect. The error
will keep propagating unless it is handled. You can handle the error with
functions like
catchAll
or
catchTag
.
Example (Creating a Failed Effect)
import { Effect } from"effect"
// ┌─── Effect<never, Error, never>
// ▼
constfailure= Effect.fail(
newError("Operation failed due to network error")
)
@see ― succeed to create an effect that represents a successful value.
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
When to Use
Use this function when you are sure the operation will not reject.
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
When to Use
Use this function when you are sure the operation will not reject.
Pipes the value of an expression into a pipeline of functions.
Details
The pipe function is a utility that allows us to compose functions in a
readable and sequential manner. It takes the output of one function and
passes it as the input to the next function in the pipeline. This enables us
to build complex transformations by chaining multiple functions together.
import { pipe } from"effect"
constresult=pipe(input, func1, func2, ..., funcN)
In this syntax, input is the initial value, and func1, func2, ...,
funcN are the functions to be applied in sequence. The result of each
function becomes the input for the next function, and the final result is
returned.
Combines multiple effects into one, returning results based on the input
structure.
Details
Use this function when you need to run multiple effects and combine their
results into a single output. It supports tuples, iterables, structs, and
records, making it flexible for different input types.
For instance, if the input is a tuple:
// ┌─── a tuple of effects
// ▼
Effect.all([effect1, effect2, ...])
the effects are executed sequentially, and the result is a new effect
containing the results as a tuple. The results in the tuple match the order
of the effects passed to Effect.all.
Concurrency
You can control the execution order (e.g., sequential vs. concurrent) using
the concurrency option.
Short-Circuiting Behavior
This function stops execution on the first error it encounters, this is
called "short-circuiting". If any effect in the collection fails, the
remaining effects will not run, and the error will be propagated. To change
this behavior, you can use the mode option, which allows all effects to run
and collect results as Either or Option.
The mode option
The { mode: "either" } option changes the behavior of Effect.all to
ensure all effects run, even if some fail. Instead of stopping on the first
failure, this mode collects both successes and failures, returning an array
of Either instances where each result is either a Right (success) or a
Left (failure).
Similarly, the { mode: "validate" } option uses Option to indicate
success or failure. Each effect returns None for success and Some with
the error for failure.
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
Example (Applying a Discount Based on Fetched Amount)
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
Example (Applying a Discount Based on Fetched Amount)
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
Example (Applying a Discount Based on Fetched Amount)
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Executes an effect and returns the result as a Promise.
Details
This function runs an effect and converts its result into a Promise. If the
effect succeeds, the Promise will resolve with the successful result. If
the effect fails, the Promise will reject with an error, which includes the
failure details of the effect.
The optional options parameter allows you to pass an AbortSignal for
cancellation, enabling more fine-grained control over asynchronous tasks.
When to Use
Use this function when you need to execute an effect and work with its result
in a promise-based system, such as when integrating with third-party
libraries that expect Promise results.
Example (Running a Successful Effect as a Promise)
Attaches callbacks for the resolution and/or rejection of the Promise.
@param ― onfulfilled The callback to execute when the Promise is resolved.
@param ― onrejected The callback to execute when the Promise is rejected.
@returns ― A Promise for the completion of which ever callback is executed.
then(
var console:Console
The console module provides a simple debugging console that is similar to the
JavaScript console mechanism provided by web browsers.
The module exports two specific components:
A Console class with methods such as console.log(), console.error() and console.warn() that can be used to write to any Node.js stream.
A global console instance configured to write to process.stdout and
process.stderr. The global console can be used without importing the node:console module.
Warning: The global console object's methods are neither consistently
synchronous like the browser APIs they resemble, nor are they consistently
asynchronous like all other Node.js streams. See the note on process I/O for
more information.
Example using the global console:
console.log('hello world');
// Prints: hello world, to stdout
console.log('hello %s', 'world');
// Prints: hello world, to stdout
console.error(newError('Whoops, something bad happened'));
// Prints error message and stack trace to stderr:
// Error: Whoops, something bad happened
// at [eval]:5:15
// at Script.runInThisContext (node:vm:132:18)
// at Object.runInThisContext (node:vm:309:38)
// at node:internal/process/execution:77:19
// at [eval]-wrapper:6:22
// at evalScript (node:internal/process/execution:76:60)
// at node:internal/main/eval_string:23:3
constname='Will Robinson';
console.warn(`Danger ${name}! Danger!`);
// Prints: Danger Will Robinson! Danger!, to stderr
Example using the Console class:
constout=getStreamSomehow();
consterr=getStreamSomehow();
constmyConsole=new console.Console(out, err);
myConsole.log('hello world');
// Prints: hello world, to out
myConsole.log('hello %s', 'world');
// Prints: hello world, to out
myConsole.error(newError('Whoops, something bad happened'));
// Prints: [Error: Whoops, something bad happened], to err
Prints to stdout with newline. Multiple arguments can be passed, with the
first used as the primary message and all additional used as substitution
values similar to printf(3)
(the arguments are all passed to util.format()).
The Effect interface defines a value that describes a workflow or job,
which can succeed or fail.
Details
The Effect interface represents a computation that can model a workflow
involving various types of operations, such as synchronous, asynchronous,
concurrent, and parallel interactions. It operates within a context of type
R, and the result can either be a success with a value of type A or a
failure with an error of type E. The Effect is designed to handle complex
interactions with external resources, offering advanced features such as
fiber-based concurrency, scheduling, interruption handling, and scalability.
This makes it suitable for tasks that require fine-grained control over
concurrency and error management.
To execute an Effect value, you need a Runtime, which provides the
environment necessary to run and manage the computation.
Creates an Effect that represents a recoverable error.
When to Use
Use this function to explicitly signal an error in an Effect. The error
will keep propagating unless it is handled. You can handle the error with
functions like
catchAll
or
catchTag
.
Example (Creating a Failed Effect)
import { Effect } from"effect"
// ┌─── Effect<never, Error, never>
// ▼
constfailure= Effect.fail(
newError("Operation failed due to network error")
)
@see ― succeed to create an effect that represents a successful value.
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
When to Use
Use this function when you are sure the operation will not reject.
Creates an Effect that represents an asynchronous computation guaranteed to
succeed.
Details
The provided function (thunk) returns a Promise that should never reject; if it does, the error
will be treated as a "defect".
This defect is not a standard error but indicates a flaw in the logic that
was expected to be error-free. You can think of it similar to an unexpected
crash in the program, which can be further managed or logged using tools like
catchAllDefect
.
Interruptions
An optional AbortSignal can be provided to allow for interruption of the
wrapped Promise API.
When to Use
Use this function when you are sure the operation will not reject.
Combines multiple effects into one, returning results based on the input
structure.
Details
Use this function when you need to run multiple effects and combine their
results into a single output. It supports tuples, iterables, structs, and
records, making it flexible for different input types.
For instance, if the input is a tuple:
// ┌─── a tuple of effects
// ▼
Effect.all([effect1, effect2, ...])
the effects are executed sequentially, and the result is a new effect
containing the results as a tuple. The results in the tuple match the order
of the effects passed to Effect.all.
Concurrency
You can control the execution order (e.g., sequential vs. concurrent) using
the concurrency option.
Short-Circuiting Behavior
This function stops execution on the first error it encounters, this is
called "short-circuiting". If any effect in the collection fails, the
remaining effects will not run, and the error will be propagated. To change
this behavior, you can use the mode option, which allows all effects to run
and collect results as Either or Option.
The mode option
The { mode: "either" } option changes the behavior of Effect.all to
ensure all effects run, even if some fail. Instead of stopping on the first
failure, this mode collects both successes and failures, returning an array
of Either instances where each result is either a Right (success) or a
Left (failure).
Similarly, the { mode: "validate" } option uses Option to indicate
success or failure. Each effect returns None for success and Some with
the error for failure.
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
Example (Applying a Discount Based on Fetched Amount)
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
Example (Applying a Discount Based on Fetched Amount)
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))
Use andThen when you need to run multiple actions in sequence, with the
second action depending on the result of the first. This is useful for
combining effects or handling computations that must happen in order.
Details
The second action can be:
A constant value (similar to
as
)
A function returning a value (similar to
map
)
A Promise
A function returning a Promise
An Effect
A function returning an Effect (similar to
flatMap
)
Note:andThen works well with both Option and Either types,
treating them as effects.
Example (Applying a Discount Based on Fetched Amount)
import { pipe, Effect } from"effect"
// Function to apply a discount safely to a transaction amount
constapplyDiscount= (
total:number,
discountRate:number
):Effect.Effect<number, Error> =>
discountRate ===0
? Effect.fail(newError("Discount rate cannot be zero"))